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Abstract 
The purpose of this paper is to investigate the possibility of exploiting the hyperpath paradigm to 
model the dynamic transit assignment in metropolitan networks affected by heavy congestion. The 
core problem is to develop a stop model for reproducing what happens in the case of passenger 
queues and to verify which boarding rule is suitable to represent this congestion phenomenon. 
Different models are proposed depending on the layout of the stop and on the congestion level. 

1 Introduction 
The concept of optimal strategy was firstly introduced by Spiess and Florian (1989) to model the 
travel behaviour of rational passengers in presence of perceived uncertainty on vehicle arrivals 
when several routes are available to reach the destination from a transit stop, including the relevant 
case of common lines (i.e. partly overlapping). The strategy is chosen before the beginning of the 
trip and, starting from the origin, involves the iterative sequence of: walking to a transit stop or to 
the destination, selecting the attractive lines to board and, for each of them, the stop where to alight. 
According to Nguyen and Pallottino (1988), a transit assignment reproducing this strategic 
behaviour can be modelled by loading a shortest (i.e. with minimal cost) hyperpath that connects 
the origin of the trip to the destination having the diversion nodes at stops through waiting 
hyperarcs, each of which identifies a line set. Traditionally, hyperpaths have been then exploited to 
model the frequency-based transit assignment in a static framework, where it is assumed that a 
passenger, after reaching a stop, waits for the first attractive carrier among a fixed set of lines. It is 
known (Billi et al., 2004; Noekel, 2007) that this behaviour is rational only when:  

• no information is provided at the stop on actual waiting times and on the available 
capacities of arriving carriers; 

• the vehicle arrivals of different lines at the stop are statistically independent, and the same 
is true for the passenger arrivals with respect to vehicle arrivals; 

• the headway probability distribution between two successive vehicles of the same line and 
hence the waiting time for a passenger randomly arriving at the stop are exponential, i.e. 
memoryless. 

The challenge here is to investigate the possibility of developing a new model for dynamic transit 
assignment by extending the hyperpath paradigm to the case where link travel times and transit 
frequencies vary during the day. To this end, we need to specify three main components: 

• the route choice model, which reproduces the behaviour of a passenger travelling from an 
origin toward a destination on the transit network, for given service performances, 
including the line boarding probabilities of each hyperarc and its expected waiting time; 

• the Dynamic Network Loading (DNL), which is aimed at finding time-varying link flows 
and service performances that are consistent with line capacities, for given route choices 
expressed in terms of node splitting rates; 

• the stop model, which yields the probability of boarding each line of any hyperarc and its 
expected waiting time, for given passenger queues, line frequencies and expected travel 
times to reach the destination once on-board. 
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For the route choice model, we could employ a deterministic approach by extending the method 
proposed by Chabini (1998) to find the dynamic shortest hyperpaths. In addition, we could exploit 
the General Link Transmission Model (Gentile, 2008) to perform the Dynamic Network Loading. 
However, these two components are out of the scope of this work, which is dedicated solely to the 
stop model. 
Adopting the approach proposed by Meschini et al. (2007), transit frequencies are conceived here as 
a continuous flow of line carriers. This allows representing explicit capacity constraints on line 
vehicles and reproducing “over saturation” queuing times of passengers at transit stops. On the 
other hand, we have to force into the model the simulation of the “under saturation” waiting time of 
passengers at transit stops, due to the intrinsic discontinuity of the service, by associating a delay to 
hyperarcs. Therefore, the core-problem in developing a dynamic transit assignment based on 
hyperpaths is to define the stop model, investigating what happens in the case of heavy congestion 
with formation of passenger queues, and to verify which boarding rule is suitable to represent this 
congestion phenomenon.  
We will focus in the following on a single stop and a specific set of attractive lines. Our stop models 
will allow us to evaluate the expected waiting time of the corresponding hyperarc, as well as the 
probability to board each attractive line, addressing the classical case of exponential headways. In 
this situation, it is convenient to board the first attractive carrier that arrives the stop, instead of keep 
waiting (Gentile et al., 2005), if there is no queue. 
Indeed, if the flow willing to board is always under the capacity available on the approaching line 
vehicle, there is no formation and dispersion of residual queues; passengers can board immediately 
and experience only the under saturation delay. On the contrary case, passengers have to queue until 
the service becomes actually available to them, thus suffering an additional over saturation delay. 
Therefore, the model has to be adjusted to represent the queue dynamic, which depends also on the 
layout of the stop and on the information eventually provided to passengers. 

2 Hyperpath formulation and notation 
The transit network is here formally represented by an oriented hypergraph G = (N, A), where N is 
the set of nodes and A is set of arcs and hyperarcs.  
As usual, the generic arc a⊆A is identified by an ordered pair of nodes, referred to respectively as 
the tail, denoted by TL(a)∈N, and the head, denoted by HD(a)∈N; that is a = (TL(a), HD(a)). While 
for the generic hyperarc the head can be a set of nodes, i.e. HD(a)⊆N. 
We distinguish the following different types of arcs and hyperarcs: 

• AP  pedestrian arcs, used by passengers to walk from the origin to a boarding stop, from a 
stop to another stop, and from the alighting stop to the destination; 

• AH  waiting hyperarcs, used to model the under saturation delay due to the discontinuity of 
the service. Passengers at the stop do not know which attractive carrier will arrive first, 
therefore they associate a probability to each head of the hyperarc that represents the 
boarding on a particular line; 

• AQ  queuing arcs, used to model the over saturation delay due to passenger flow exceeding 
the available capacity of the line at the stop; 

• AA  alighting arcs, used to model the alighting process; 
• AL  line arcs, connecting two subsequent stops of a same line; 

Therefore we have: A = AP∪AH∪AQ∪AA∪AL .  
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Figure 1 - Representation of a stop in the hypergraph.  
 
Note that the assumption of representing first the waiting process and then the queuing process as in 
Figure 1 is questionable from a phenomenal point of view, since exactly the opposite occurs in 
reality; however this proves to be a valid choice from a modeling point of view. First of all, doing 
so allows us to develop a model with separable queues. On the contrary, if queues were not 
separate, the model should also represent overtakings among passengers wanting to board different 
attractive lines and the FIFO rule would not hold true. Secondly, both the expected waiting time and 
the expected travel time once boarded affect passenger choices as part of the generalized travel 
costs. Instead, representing the waiting process after the queuing process impedes to include the 
queuing time in the computation of the optimal strategy. Finally, because we conceive transit 
frequencies as a continuous flow of line carriers (Meschini et al., 2007), we have to force into the 
model the representation of the delay due to an actually discontinuous service. Under this 
consideration, we can add the “under saturation” waiting time at transit stops, wherever it is more 
comfortable from a modelling point of view, in this case associating it to hyperarcs before the 
queuing time, as far as all components of generalized costs are correctly taken into account. 
The support hyperarc a is associated with all the lines serving the stop. However, a passenger 
directed to a given destination d will consider only a subset of services. Therefore, we associate a 
specific hyperarc b to each possible attractive line set, i.e. HD(b) ⊆ HD(a), as depicted in Figure 2.  
 

 
Figure 2 - Wainting hyperarcs defining the attractive set associated to the support hyperarc of all available lines 
 
A hyperpath h is an acyclic sub-graph on G connecting a single origin o to a single destination d, 
where there is one single arc or hyperarc exiting from each node (except for the destination) and all 
nodes are connected to d; that is, diversions occur only at waiting hyperarcs. 
In the following we introduce the variables utilized to describe the stop model. 
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Tℓ
i(t) instant when the carrier of line ℓ departed from the terminal at time t reaches stop i 

ϕℓi(t) frequency of line ℓ at stop i at time t; it is the inverse of the headway expected value 
Qℓ

i(t) available capacity on line ℓ at stop i at time t 
Nℓ

i(t) number of passengers waiting in a queue to access line ℓ at stop i at time t (namely, 
number of passengers exceeding the available capacity of the approaching carrier) 

Mℓ
i(t) number of passengers waiting for service at stop i at time t that are able to board the 

next carrier of line ℓ 
WL

i(t) expected waiting time of the hyperarc identified by the set of attractive lines L serving 
stop i  at time t 

πℓ∈L
i(t) probability of boarding line ℓ among the attractive set L at stop i  at time t ; equal to the 

internal coefficients of the corresponding hyperarc 
eℓi(t) flow of passengers on line ℓ approaching stop i  at time t 
Φℓ vehicle capacity of line ℓ 
Pℓ

i(t) probability to be able of boarding the next vehicle of line ℓ approaching stop i  at time t  
ψℓ

i(t) effective frequency of line ℓ at stop i  at time t  
 
The temporal profile ϕℓi(t) of the frequency at a given stop can be determined on the basis of the 
temporal profile λℓ(t) of the frequency departing from the terminal and of the travel times on the 
network by applying a basic dynamic formula: 
ϕℓi(Tℓ

i(t)) = λℓ(t) / (dTℓ
i(t) / dt)  (1) 

The available capacity is then given by: 
Qℓ

i(t) = Φℓ ⋅ ϕℓi(t) - eℓi(t) , (2) 
Therefore, we have:  
Mℓ

i(t) = Qℓ
i(t) / ϕℓi(t)  (3) 

Based on the above equations, all variables are time-varying, including the main characteristic of 
the headway distribution, that is the frequency. However, it is very difficult to consider this feature 
in the computation of expected waiting time and line probabilities, which require an integration 
over time. We will henceforth refer to the values of all the variables at the instant when the 
passengers reaches the stop and consider them to be constant during the wait. 

3 The stop model for a single line 

3.1 Mingling queue 
If the stop is designed as a platform (namely, in the underground case), passengers mingle on it and 
cannot respect any boarding order, as they do not know exactly where the carrier is going to stop. 
Thus, if a passenger stands just in front of the point where the doors will open, then he will 
probably board on the next carrier approaching the stop. But if he stands far from that point, he may 
have to wait for a subsequent arrival. Therefore, the waiting time does not decrease only because a 
passenger has already missed one or two runs due to congestion. These are the same assumptions 
made in Schmoecker et al. (2008). On such basis, a passenger has the same probability of boarding 
at each carrier arrival, that can be evaluated as: 
Pℓ

i(t) = Mℓ
i(t) / (Mℓ

i(t) + Nℓ
i(t))  (4) 

Therefore, passengers perceive a service with the following effective frequency: 
ψℓ

i(t) = ϕℓi(t) ⋅ Pℓ
i(t)  (5) 

Given the hypothesis of exponential arrivals with rate ϕℓi(t), it can be proved (we did it by 
simulation) that the probability density function of the waiting time for the generic line ℓ is still 
exponential with a rate equal to the effective frequency: 
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fℓi(w, t) = ψℓ
i(t) ⋅ exp(-ψℓ

i(t) ⋅ w), if w ≥ 0 ; fℓi(w, t) = 0, otherwise  (6) 
and thus the expected waiting time is: 
Wℓ

i(t) = 1 / ψℓ
i(t) = 1 / ϕℓi(t) + Nℓ

i(t) / Qℓ
i(t)  (7) 

This is consistent with the intuition, that calls for scaling the frequency by the probability to be able 
of boarding. Moreover the waiting time can be decomposed into a service time and a queuing time. 
Clearly, when the congestion level is extremely high the queue may spill back from the platform 
and can assume a FIFO behaviour; this phenomenon can be modelled by a link to access the 
platform with a final bottleneck. 

3.2 FIFO queue 
If the stop is designed so that passengers have to respect a FIFO service order, then who arrives as 
first at the stop is the first to board. Hence, the Nℓ

i(t)-th queuing passenger will have to wait for the 
kℓi(t)-th arrival, when the service will be truly available to him:  
kℓi(t) = 1 + INT[Nℓ

i(t) / Mℓ
i(t)]  (8) 

where INT[x] is the first integer not smaller than x. 
Given that the headway is exponentially distributed, the arrival of the kℓi(t)-th vehicle has an Erlang 
distribution: 
fℓi(w, t) = exp(-ϕℓi(t) ⋅ w) ⋅ ϕℓi(t) ^ kℓi(t) ⋅ w ^ (kℓi(t)-1) / (kℓi(t)-1)!, if w ≥ 0; fℓi(w, t) = 0, otherwise (9) 
Relaxing kℓi(t) to a continuous variable: 
kℓi(t) = 1 + Nℓ

i(t) / Mℓ
i(t) = 1 / Pℓ

i(t)  (10) 
yields the following Gamma distribution of waiting time: 
fℓi(w, t) = exp(-ϕℓi(t) ⋅ w) ⋅ ϕℓi(t) ^ kℓi(t) ⋅ w ^ (kℓi(t)-1) / Γ(kℓi(t)), if w ≥ 0; fℓi(w, t) = 0, otherwise (11) 
and thus the expected waiting time is: 
Wℓ

i(t) = kℓi(t) / ϕℓi(t) = 1 / ψℓ
i(t) = 1 / ϕℓi(t) + Nℓ

i(t) / Qℓ
i(t)  (12) 

Consequently, the expected waiting time at the stop is the same as in the mingling case, given by 
the service time and a queuing time. The variance of the Erlang or Gamma function is instead lower 
than the variance of the Exponential function for the same expected value. 

4 The stop model for multiple lines  

4.1 Mingling queue 
Let us consider a stop where passengers mingle while waiting to board the first attractive line. 
When the available capacity of approaching carriers is lower than the number of passengers at the 
stop willing to board a line, the waiting time has an exponential distribution with rate equal to the 
effective frequency computed by (5). 
On this basis it is possible to compute as in Gentile et al. (2005) the probability of line ℓ to be the 
first line where the passenger is able to board among the attractive set L, given that the vehicle 
arrivals of different lines are statistically independent. Therefore, the internal coefficient of the 
corresponding hyperarc is equal to the ratio between the effective frequency of the line ℓ and the 
sum of the effective frequencies of all the attractive lines j∈L: 
πℓ∈L

i(t) = ψℓ
i(t) / ∑ j∈L ψj

i(t)  (13) 
while the expected waiting time is the inverse of the cumulated effective frequencies: 
WL

i(t) = 1 / ∑ j∈L ψj
i(t)  (14) 
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4.2 separate FIFO queue 
If the transit system is highly crowded, the stops shared by several lines can be designed to have 
physically separate queues for the different lines. This situation should be modelled in different 
ways according to the actual congestion level. 
In this case, each line where Nℓ

i(t) >0 cannot be considered for a strategic behaviour, since the 
passenger has to join the corresponding queue as soon as he reaches the stop and then it may be 
difficult for him to change row. This case thus reduces to that of a FIFO queue for a single line that 
we already have examined. 
All the other lines can instead be included into non-trivial attractive sets. Since there is no queue 
congestion, the stop model reduces to the classical exponential case, where: 
πℓ∈L

i(t) = ϕℓi(t) / ∑ j∈L ϕj
i(t)  (15) 

WL
i(t) = 1 / ∑ j∈L ϕj

i(t)  (16) 
However, if passengers were provided with information at the stop regarding the arrival times of 
carriers and the available capacity on-board (or the passenger has sufficient experience to guess it), 
we could still model passengers’ behaviour through hyperpaths also in the case of queues. Indeed, 
the information anticipates the event of vehicle’s arrival to the moment when the passenger reaches 
the stop; hence, his optimal travel strategy comes true at this instant, when he actually chooses 
which line to board taking into account the length of the different queues. 

4.3 mixed FIFO queue 
The last model we discuss represents a stop served by a set of different lines, where passengers wait 
together in a single queue to board the first carrier of their own attractive set. In this case overtaking 
is possible among passengers having different attractive set; however, any competition among 
passengers willing to board an approaching line is solved applying the FIFO rule. 
The over saturation queue of each line determines which kℓi(t)-th vehicle the passenger is waiting 
for based on equation (10), while equation (11) expresses the probability density function that the 
kℓi(t)-th arrival occurs after a waiting time w. 
On this basis we can proceed as in Gentile et al. (2005). Let Fℓ

i(w, t) be the cumulative distribution 
of such a waiting time. The probability of boarding line ℓ∈L is equal to the probability that its kℓi(t)-
th arrival occurs before that of all the other lines: 
πℓ∈L

i(t) = 0∫∞ γℓ∈L
i(w, t) ⋅ dw (17) 

γℓ∈L
i(w, t) = fℓi(w, t) ⋅ ∏ j≠ℓ∈L (1-Fℓ

i(w, t))  (18) 
Finally, we can obtain the expected waiting time as: 
WL

i(t) = ∑ ℓ∈L 0∫∞ γℓ∈L
i(w, t) ⋅ w ⋅ dw (19) 
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